Automatic formant extraction for sociolinguistic analysis of large corpora
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Abstract

In this paper, we propose a method of formant prediction from
pole and bandwidth data, and apply this method to automati-
cally extract F1 and F2 values from a corpus of regional dialect
variation in North America that contains 134,000 manual for-
mant measurements. These predicted formants are shown to in-
crease performance over the default formant values from a pop-
ular speech analysis package. Finally, we demonstrate that so-
ciolinguistic analysis based on vowel formant data can be con-
ducted reliably using the automatically predicted values, and we
argue that sociolinguists should begin to use this methodology
in order to be able to analyze larger amounts of data efficiently.
Index Terms: formant prediction, corpus analysis, sociolin-
guistics

1. Introduction

Despite the recent increase in the number and availability of
large speech corpara, the field of sociolinguistics has yet to
benefit substantially from the wealth of potential acoustic data.
Most sociolinguists hold the belief that automated acoustic
analysis is too error-prone to produce consistent and accurate
results [1], and thus avoid large-scale corpus research in gen-
eral. Since sociophonetic analysis is still based primarily on
manual measurements and annotations, the vast majority of
such studies either use datasets that are too small to generalize
reliably to a wider population or take a long time to be analyzed.

This paper considers one of the most common types of
acoustic analyses used in sociolinguistic research: vowel for-
mant extraction. Ever since the first instrumental sociolinguistic
analyses of sound change in progress [2], sociolinguistic stud-
ies of vowel variation have focused almost exclusively on F1
and F2. These two values are claimed to capture the “most
salient regional and social differences in the pronunciation of
the vowels of North American English” [1] (although see [3]
for an argument that other sources acoustic information should
also be included in sociolinguistic analyses). Despite the fact
that other representations, such as MFCCs, are commonly used
in ASR tasks, formants continue to prove useful to phoneti-
cians because of their low dimensionality, their correspondance
to articulatory gestures, their resistance to transmission channel
effects, and their ability to characterize linguistically relevant
vowel distinctions.

Vowel formant extraction, however, as conducted in most
sociophonetic analyses, is a laborious process which requires
the annotator to listen to every token while examing a spectro-
gram before recording the F1 and F2 values from the LPC anal-
ysis program (although see [4] for a notable early exception).
Often, the annotator adjusts the number of poles in the LPC
analysis when formants are not visible in locations that would
be expected based on the annotator’s prior knowledge of the
distribution of the vowel in the token. Such adjustments are fre-

quently necessary, especially for non-high back vowels where
the F1 and F2 values are close together (for example, based on
the annotations in the log files for [1], this process was neces-
sary in at least 10% of 134,000 manual formant measurements).

Due to the time required to produce sociolinguistic anal-
yses of large speech corpora using the accepted techniques of
manual formant analysis, it would be beneficial to the field if
it could be shown that automatic formant analysis can produce
results that reliably capture sociolinguistic variation. For ex-
ample, the ANAE corpus (described in Section 2) took several
years to analyze manually, whereas approximately 10 times as
much data with similar sociolinguistic attributes could be au-
tomatically extracted from the Switchboard corpus [5]. This
paper presents a method for automatic formant extraction for
corpora where a transcript of the audio file is available, and thus
the identity of the vowel to be analyzed is known. The general
approach is to use the same type of knowledge as the human
annotator does when making decisions in the manual formant
extraction process: namely, prior knowledge of the distribution
of formants for a given vowel. We will show that this method of
formant extraction leads to an improvement over the formants
produced by the default settings of a commonly used formant
tracking program, and that the automatically extracted formants
are able to accurately characterize groups of speakers based on
their participation in regional sound changes.

2. Description of the Corpus

The sociolinguistic corpus used for the current analysis is the
Atlas of North American English [1], henceforth ANAE. The
ANAE corpus consists of ca. 30-minute long dialectological
interviews conducted over the telephone with speakers from
across the United States and Canada, and represents the most
complete corpus of geographical variation in English. The
ANAE sampling methods ensured that the data from each di-
alect region is more accurate and fine-grained than in other cor-
pora: at least two speakers were selected randomly from every
city in North America with more than 50,000 inhabitants, and
only speakers who had lived their entire lives in that city were
chosen. The interviews consisted of a series of elicitation tasks
which focused on the pronunciation of specific lexical items,
minimal pair tests, free conversation, and a word list.

A total of 439 speakers were selected for detailed acous-
tic analysis by the ANAE authors. For these speakers, anno-
tators examined all tokens with primary stress, and provided
hand measurements for the first two formants at a single point
in time. The measurement points were chosen to represent the
“central tendency” of each vowel, and were determined through
a combination of auditory perception and visual analysis of the
spectrogram (see Section 5.5 in [1] for a detailed description of
the procedure). For tokens where the formants produced by the
LPC software did not match the spectrograms, the annotators



modified the number of poles used in the LPC analysis until an
acceptable formant track was produced. In total, 134,000 vowel
were analyzed in this manner.

For the purposes of comparing automatic formant predic-
tion methods with the F1 and F2 values provided by the human
ANAE annotators, it is necessary to determine the point in time
at which the manual F1 and F2 measurements are taken. This
information is not contained in the log files that were included
in the published version of ANAE, but is available in earlier ver-
sions of the log files obtained from the ANAE authors. These
two sources of information were merged to produce a database
of F1 and F2 measurements with time stamps for a total of
111,810 tokens from 384 speakers (formant data from several
speakers had to be excluded because the original log files with
time stamps were not available).

3. Methods
3.1. ESPS Formant Extraction

A baseline set of automatic formant measurements was ex-
tracted by using the formant command from the ESPS soft-
ware package [6]. Most default settings for the formant com-
mand were used, resulting in the following formant analysis
parameters: 12 order autocorrelation LPC analysis using a 49
msec raised cosine window at 100 Hz with a preemphasis factor
of 0.7. The only setting given a different value was the number
of formants to predict: this was set to 3, since the corpus con-
sists of telephone speech and the signal thus has a maximum fre-
quency component of 3500 Hz (tests conducted with the default
setting of 4 formants resulted in similar performance). After
the formant command was run on each token, the predicted
F1 and F2 values at the point in time closest to the hand mea-
surement were extracted.

3.2. Proposed Formant Prediction Method

The general approach taken by the proposed formant predic-
tion method is to simulate the procedure used by a human an-
notator by incorporating prior knowledge of the distribution of
formant and bandwidth combinations for specific vowels. For
each vowel, a model of formant and bandwidth combinations
was trained by computing the means and full covariance matri-
ces for the manual F1 and F2 measurements with their respec-
tive bandwidths. Since bandwidth information is not provided
in the ANAE corpus, the bandwidth values associated with the
default ESPS formant tracker were used when they were close
to the hand formants. The threshold we used for determining
whether to use a token’s ESPS bandwidth data in the training
set was if both the predicted F1 and F2 values were within 7%
of the respective hand measurements. This criterion led to a
total of 61,048 training tokens (55% of the total corpus) with
manual F1 and F2 values plus bandwidth data from the ESPS
measurements (tests were also conducted with models trained
using only F1 and F2 data from all 111,810 tokens, i.e. without
bandwidth data, but this led to decreased performance). Addi-
tionally, the bandwidth measurements were converted to the log
domain for both training and testing in order to make the band-
width distributions closer to Gaussian (tests with the formant
frequency values also converted to the log domain showed no
further improvement).

To predict F1 and F2 using the current method for a given
test vowel, we consider all possible pairs of poles and their as-
sociated bandwidths returned by the ESPS LPC analysis for the
vowel. This results in (;) test instances, where n is the number

of poles provided by ESPS. Each test instance, x, is thus a vec-
tor consisting of four values: the two potential formant values
and their associated bandwidths. To determine the most likely
F1 and F2 values, the Mahalanobis distance, D, between the
model for the vowel and each test instance is computed, and the
two poles from the vector for which the distance is smallest are
assigned to F1 and F2. The equation for D is given in Equation
1, where i and ¥ are the means and covariance matrix for the
formant and bandwidth values for the vowel.

D)= (& — 0TS (x - p) ()

4. Results
4.1. Comparison to Baseline

Table 1 shows the overall improvement over the ESPS formants
using our predicted formants for all 111,810 tokens in the cor-
pus, obtained by applying 10-fold cross validition to the entire
data set (see [7] for similar results comparing ESPS and man-
ual formants on a different database). The proposed method
reduces the global mean absolute difference from the hand mea-
surements by 10% in F1 and 20% in F2. The performance im-
proved for all 30 individual vowel classes in F1; in F2, a large
performance gain was obtained for non-front vowels, whereas
performance declined slightly for front non-low vowels.

Mean abs. difference | RMS difference
F1 F2 F1 F2
ESPS default 54.8 112.8 97.9 297.3
Proposed method | 49.4 90.6 79.8 199.9

Table 1: Differences between two formant prediction methods
and manual measurements (N = 111,810)

The observed mean differences between our automated
measurements and the ANAE hand measurements are compa-
rable in size to the generally-acknowledged uncertainty in for-
mant frequency estimation (cf. also the inter-labeler agreement
results reported in [7]), and also to the perceptual difference li-
mens found by [8].

Figures 1 and 2 graphically illustrate the comparison be-
tween the proposed method and the baseline for 17,954 tokens
from three vowel classes: 1Y as in heat, AA as in hot, and
UW as in hoot (the UW class corresponds to the /Kuw/ class
in ANAE, namely /uw/ after non-coronal onsets, where most
dialects do not have substantial fronting). The most striking
difference between the two sets of predicted formant values is
in the lower-left quadrant of the two plots: in the ESPS plot in
Figure 1 there are many tokens of AA and UW erroneously pre-
dicted to be in this quadrant, whereas the plot from the proposed
method looks much more similar to the distributions obtained
by the hand measurements shown in Figure 3.

4.2. Vowel classification

As an additional method of comparison between the different
sets of extracted formants, three-way vowel classifications tasks
were conducted. For these tests, all vowel formant measure-
ments were normalized using the procedure in [9], which is the
standard method used in sociolinguistic studies to reduce effects
due to vocal tract length differences but still preserve effects due
to sociolinguistic characteristics of the speaker [1]. Separate
group means and speaker normalization factors were computed
for each of the three different sets of F1 and F2 measurements.
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Figure 1: ESPS F1 and F2 measurements for ['Y, UW and AA

\ Formant values | Accuracy |
Manual 97.9%
Predicted (proposed method) 97.6%
ESPS default 90.2%

Table 2: Overall accuracy for classifying I'Y, UW, and AA using
three different sets of F1 and F2 values (N = 17,954)

For the normalized versions of the 17,954 tokens of the
three vowels AA, IY, and UW shown in Figures 1 — 3, the classi-
fication task was to predict the most likely vowel class given F1
and F2. Again, models for each vowel using the means and co-
variance matrices were trained through 10-fold cross validation,
and classification was done for each test vowel by minimizing
the Mahalanobis distance (similar results were obtained for all
tasks using a decision tree classifier). Table 2 presents the over-
all classification accuracy for the three different sets of formant
values, and Tables 3 — 5 show the confusion matrices.

The overall accuracy and vowel-specific precision and re-
call using the F1 and F2 values predicted by the proposed
method are higher than the results using the formants predicted
by ESPS, and are quite similar to the results obtained from using
the hand measured formants.

4.3. Characterization of sound changes

The most important test for the applicability of any automatic
formant prediction method from a sociolinguist’s perspective is
whether the predicted values demonstrate the same group trends
as the values measured by hand. Le., for any sociolinguistically
important group of speakers based on sex, age, geographic re-
gion, etc., the group’s vowel means from the predicted formants

classified as — | AA IY uw

AA 9726 1 79
Iy 7 4594 161
uw 33 100 3254

Table 3: Classification results using hand formants
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Figure 2: F1 and F2 measurements for IY, UW and AA pre-
dicted by the current method

classified as — | AA IY uw

AA 9665 2 139
Iy 5 4604 153
uw 32 103 3251

Table 4: Classification results using predicted formants

must demonstrate the same type of variation as the means from
the hand measurements. Even when a small number of auto-
matic formant measurements are gross errors, the sociolinguis-
tic analysis can still be conducted successfully if they are not
systematically biased in any direction.

As a demonstration of this approach to validating the auto-
matic formants predicted for the ANAE, Figure 4 displays the
vowels participating in the Northern Cities Shift (NCS). This
large-scale chain shift involves most of the short vowels, and is
currently proceeding in a strikingly uniform manner throughout
most of the Inland North dialect region (see Chapter 14 in [1]).
As a reference for the non-shifted forms, Figure 4 shows the
means (from non-prenasal tokens) from the normalized manual
F1 and F2 measurements for the 332 non-Inland North speak-
ers in black. The NCS vowel means for the 52 Inland North
speakers are then shown for the three sets of measurements.

The two sets of automatically predicted formants both cap-
ture the characteristics of the NCS: tense AE is higher and fron-
ter than EH, which has lowered and moved back; also the NCS
strong fronting of AA is clearly visible. While none of the NCS
vowel means predicted by either of the two automatic methods
are far enough off from the hand measurements to obscure the
relative positions of the vowels, the values predicted by the cur-
rent method for the vowels AH and AO are much closer to the

classified as — | AA IY uw

AA 9033 11 762
Iy 17 4130 615
uw 109 250 3027

Table 5: Classification results using ESPS formants
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Figure 3: Hand F1 and F2 measurements for I'Y, UW and AA

hand measured means than the ESPS values, while the ESPS
mean for EH is closer than the one predicted by our method.
In either case, a sociolinguistic analysis using the automatically
predicted formants would reach the same conclusions as one
using the manual formants.

5. Discussion

The analysis of the Northern Cities Shift vowels in Section
4.3 shows convincingly, in our opinion, that sociolinguistic re-
search can be carried out reliably by using automatically pre-
dicted formant values. We believe that the common stance
of sociolinguists that only manual formant values are accurate
enough for sociophonetic analysis is no longer valid. For cor-
pora which have transcriptions available, and can thus be sub-
ject to forced alignment so that vowel boundaries can be ob-
tained, automatic formant values can lead to reliable sociolin-
guistic analyses much faster than the traditional method. Fur-
thermore, when very large corpora are used, errors in individual
tokens and even individual speakers will not harm the analysis.

Additionally, the overall differences in Section 4.1 and the
classification results in Section 4.2 show that our method of pre-
dicting formants by using prior knowledge of the formant dis-
tribution for the vowel in the reference transcription performs
better than the default settings of a popular formant tracking
program. Further refinements to this Bayesian approach to for-
mant prediction, especially the inclusion of robust statistics to
identify errors, could reduce the difference between manual for-
mant measurements and automatic ones even further.

The final step that is necessary in producing a fully auto-
matic formant prediction system is to determine where in the
vowel the formant measurements should be taken. For monoph-
thongal vowels, this choice is not difficult, and nearly all time
points outside of the consonantal transitions will produce ac-
ceptable measurements. For vowels with more complex trajec-
tories, however, common approaches such as measuring a few
fixed points or taking averages obscure the true nature of the
vowel’s target, especially in cases of sound change. Future work
will attempt to address this question by using the manual mea-
surements from the ANAE corpus to provide models (perhaps
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ESPS Inland North
Predicted Inland North
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Figure 4: Northern Cities Shift vowel means for Inland North
and non-Inland North speakers

dialect-specific ones in cases of sound change) for the optimal
measurement point for each vowel. Finally, further research
will investigate reducing the size of the training set in order to
determine the minimum amount of training data necessary to
achieve reliable formant predictions for each vowel.

6. Conclusions

In this paper we have demonstrated that automatic formant
tracking is a tool that is ready to be added to the methods that
sociolinguists use to analyze acoustic data. The field would
benefit substantially by adopting this methodology, due to the
recent drastic increase in large corpora with sociolinguistically
interesting distributions of speakers.
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